
Department of CSE Page 1 of 51

Unit-1 :

Object Oriented Thinking

A way of viewing world:

It means how we handle the real world situations through OOP and how we could make the computer closely

model the techniques.

Eg: Raju wished to send some flowers to his friend for his birthday & he was living some miles away. He went

to local florist and said the kind of flowers. He want to send to his friend’s address. And florist assured those

flowers will be sent automatically.

Agents and Communities:

To solve my food delivery problem, I used a solution by finding an appropriate agent (Zomato) and pass a

message containing my request. It is the responsibility of the agent (Zomato) to satisfy my request. Here, the

agent uses some method to do this. I do not need to know the method that the agent has used to solve my

request. This is usually hidden from me.

So, in object-oriented programming, problem-solving is the solution to our problem which requires the help of

many individuals in the community. We may describe agents and communities as follows.

An object-oriented program is structured as a community of interacting agents, called objects. Where each

object provides a service (data and methods) that is used by other members of the community.

In our example, the online food delivery system is a community in which the agents are zomato and set of

hotels. Each hotel provides a variety of services that can be used by other members like zomato, myself, and

my family in the community.

Messages & Methods:

When a message is passed to an agent (or object) that is capable of performing an action, then that action will

be initiated in OOP. An object which receives the message sent is called ‘receiver’. When a receiver accepts a

message, it means that the receiver has accepted the responsibility of processing the requested action. It then

performs a method as a response to the message in order to fulfill the request.

Responsibilities:

A fundamental concept in OOP is to describe behavior in terms of responsibilities. A Request to perform an

action denotes the desired result. An object can use any technique that helps in obtaining the desired result and

this process will not have any interference from other object. The abstraction level will be increased when a

problem is evaluated in terms of responsibilities. The objects will thus become independent from each other

Department of CSE Page 2 of 51

which will help in solving complex problems. An Object has a collection of responsibilities related with it

which is termed as ‘protocol’

The Operation of a traditional program depends on how it acts on data structures. Where as an OOP operates by

requesting data structure to perform a service.

Classes & Instances:

A Receiver’s class determines which method is to be invoked by the object in response to a message. When

similar messages are requested then all the objects of a class will invoke the same method.

All objects are said to be the instances of a class.

For e.g., If ‘flower’ is a class then Rose is its instance

Class Hierarchies (Inheritance):

It is possible to organize classes in the form of a structure that corresponds to hierarchical inheritance. All the

child classes can inherit the properties of their parent classes. A parent class that does not have any direct

instances is called an abstract class. It is used in the creation of subclasses.

Let ‘Hari’ be a florist, but florist more specific form of shot keeper. Additionally, a shop keeper is a human and

a human is definitely a mammal. But a mammal is an animal & animal is material object.

All these categories along with their relationships can be represented using a graphical technique shown in

figure. Each category is regarded as a class. The classes at the top of the tree are said to be more abstract

classes and the classes at the bottom of the tree are said to be more specific classes.

http://math.hws.edu/javanotes/c5/s1.html
https://javawriteoncerunanywhere.files.wordpress.com/2014/10/object-oriented-thinking.png

Department of CSE Page 3 of 51

Inheritance is a principle, according to which knowledge of a category (or class) which is more general can also

be applied to a category which is more specific.

Method Binding:

When the method is super class have same name that of the method in sub class, then the subclass method

overridden the super-class method. The program will find out a class to which the reference is actually pointing

and that class method will be binded.

E.g.

class parent

{ void print()

{ System.out.println(“From Parent”);

}

}

class child extends parent

{

void print()

{ System.out.println(“From Child”);

}

}

class Bind

{

Public static void main(String arg[])

{ child ob=new child();

ob.print();

}

}

o/p: From Child

The child’s object ‘ob’ will point to child class print() method thus that method will be binded.

http://docs.oracle.com/javaee/5/api/javax/faces/el/MethodBinding.html

Department of CSE Page 4 of 51

Overriding:

When the name and type of the method in a subclass is same as that of a method in its super class. Then it is

said that the method present in subclass overrides the method present in super class. Calling an overridden

method from a subclass will always point to the type of that method as defined by the subclass, where as the

type of method defined by super class is hidden.

E.g. (above ’method binding’ example)

Exceptions:

Exception is a error condition that occurs in the program execution. There is an object called ‘Exception’ object

that holds error information. This information includes the type and state of the program when the error

occurred.

E.g. Stack overflow, Memory error etc

Summary of OOP concepts (proposed by Alan kay):

1. Everything is an

2. Computation is performed by objects communicating with each other, requesting that other objects

perform actions. Objects communicate by sending & receiving messages. A message is a request for an

action bundled with whatever arguments may be necessary to complete the task.

3. Each object has its own memory, which consists of other objects.

4. Every Object is an instance of class. A class simply represents a grouping of similar objects, such as

integers or lists.

5. The class is the repository for behavior associated with an object. That is all objects that are instances of

same class can perform the same actions.

6. Classes are organized into a singly rooted tree structure, called inheritance hierarchy.

Object Oriented Programming is a paradigm that provides many concepts such as

inheritance, data binding, polymorphism etc.

Simula is considered as the first object-oriented programming language. The programming

paradigm where everything is represented as an object is known as truly object-oriented

programming language.

Smalltalk is considered as the first truly object-oriented programming language.

OOPs (Object Oriented Programming System)

Object means a real word entity such as pen, chair, table etc. Object-Oriented Programming is

a methodology or paradigm to design a program using classes and objects. It simplifies the

software development and maintenance by providing some concepts:

o Object

Department of CSE Page 5 of 51

o Class

o Inheritance

o Polymorphism

o Abstraction

o Encapsulation

Object

Any entity that has state and behavior is known as an object. For example: chair, pen, table,

keyboard, bike etc. It can be physical and logical.

Class

Collection of objects is called class. It is a logical entity.

Inheritance

When one object acquires all the properties and behaviours of parent object i.e. known as

inheritance. It provides code reusability. It is used to achieve runtime polymorphism.

Polymorphism

When one task is performed by different ways i.e. known as polymorphism. For example: to

convince the customer differently, to draw something e.g. shape or rectangle etc.

In java, we use method overloading and method overriding to achieve polymorphism.

Another example can be to speak something e.g. cat speaks meaw, dog barks woof etc.

Abstraction

Hiding internal details and showing functionality is known as abstraction. For example: phone

call, we don't know the internal processing.

In java, we use abstract class and interface to achieve abstraction.

Encapsulation

Binding (or wrapping) code and data together into a single unit is known as encapsulation.

For example: capsule, it is wrapped with different medicines.

Department of CSE Page 6 of 51

A java class is the example of encapsulation. Java bean is the fully encapsulated class because all

the data members are private here.

Benefits of Inheritance

 One of the key benefits of inheritance is to minimize the amount of duplicate code in an

application by sharing common code amongst several subclasses. Where equivalent code

exists in two related classes, the hierarchy can usually be refactored to move the common

code up to a mutual superclass. This also tends to result in a better organization of code and

smaller, simpler compilation units.

 Inheritance can also make application code more flexible to change because classes that

inherit from a common superclass can be used interchangeably. If the return type of a

method is superclass

 Reusability - facility to use public methods of base class without rewriting the same.

 Extensibility - extending the base class logic as per business logic of the derived class.

Department of CSE Page 7 of 51

 Data hiding - base class can decide to keep some data private so that it cannot be

altered by the derived class

Procedural and object oriented programming paradigms

Department of CSE Page 8 of 51

Java Programming- History of Java

The history of java starts from Green Team. Java team members (also known

as Green Team), initiated a revolutionary task to develop a language for digital

devices such as set-top boxes, televisions etc.

For the green team members, it was an advance concept at that time. But, it was

suited for internet programming. Later, Java technology as incorporated by

Netscape.

Currently, Java is used in internet programming, mobile devices, games, e-business

solutions etc. There are given the major points that describes the history of java.

1) James Gosling, Mike Sheridan, and Patrick Naughton initiated the Java

language project in June 1991. The small team of sun engineers called Green

Team.

2) Originally designed for small, embedded systems in electronic appliances like set-

top boxes.

3) Firstly, it was called "Greentalk" by James Gosling and file extension was .gt.

4) After that, it was called Oak and was developed as a part of the Green

project.

Java Version History

There are many java versions that has been released. Current stable release of Java

is Java SE 8.

1. JDK Alpha and Beta (1995)

2. JDK 1.0 (23rd Jan, 1996)

3. JDK 1.1 (19th Feb, 1997)

4. J2SE 1.2 (8th Dec, 1998)

5. J2SE 1.3 (8th May, 2000)

6. J2SE 1.4 (6th Feb, 2002)

7. J2SE 5.0 (30th Sep, 2004)

8. Java SE 6 (11th Dec, 2006)

9. Java SE 7 (28th July, 2011)

10.Java SE 8 (18th March, 2014)

Department of CSE Page 9 of 51

Features of Java(buzzwords)

There is given many features of java. They are also known as java buzzwords. The Java Features

given below are simple and easy to understand.

1. Simple

2. Object-Oriented

3. Portable

4. Platform independent

5. Secured

6. Robust

7. Architecture neutral

8. Dynamic

9. Interpreted

10. High Performance

11. Multithreaded

12. Distributed

Java Comments

The java comments are statements that are not executed by the compiler and interpreter. The

comments can be used to provide information or explanation about the variable, method, class or

any statement. It can also be used to hide program code for specific time.

Types of Java Comments

There are 3 types of comments in java.

1. Single Line Comment

2. Multi Line Comment

3. Documentation Comment

Java Single Line Comment

The single line comment is used to comment only one line.

Syntax:

1. //This is single line comment

Department of CSE Page 10 of 51

 Example:

public class CommentExample1 {

public static void main(String[] args) {

int i=10;//Here, i is a variable

System.out.println(i);

}

}

Output:

Java Multi Line Comment

The multi line comment is used to comment multiple lines of code.

Syntax:

/*

This

is

multi line

comment

*/

Example:

public class CommentExample2 {

public static void main(String[] args) {

/* Let's declare and

print variable in java. */

int i=10;

System.out.println(i);

} }

Output:

10

10

Department of CSE Page 11 of 51

Java Documentation Comment

The documentation comment is used to create documentation API. To create documentation API, you need

to use javadoc tool.

Syntax:

/**

This

is

documentation

comment

*/

Example:

/** The Calculator class provides methods to get addition and subtraction of given 2 numbers.*/

public class Calculator {

/** The add() method returns addition of given numbers.*/

public static int add(int a, int b){return a+b;}

/** The sub() method returns subtraction of given numbers.*/

public static int sub(int a, int b){return a-b;}

}

Compile it by javac tool:

Create Documentation API by javadoc tool:

Now, there will be HTML files created for your Calculator class in the current directory. Open the HTML

files and see the explanation of Calculator class provided through documentation comment.

javac Calculator.java

javadoc Calculator.java

Department of CSE Page 12 of 51

Data Types

Data types represent the different values to be stored in the variable. In java, there are two types of data types:

o Primitive data types

o Non-primitive data types

Data Type Default Value Default size

boolean

false

1 bit

char

'\u0000'

2 byte

byte

0

1 byte

short

0

2 byte

int

0

4 byte

long

0L

8 byte

float

0.0f

4 byte

double

0.0d

8 byte

Java Variable Example: Add Two Numbers

class Simple{
public static void main(String[] args){

int a=10;

int b=10;

int c=a+b;

System.out.println(c);

}}

Output:20

Department of CSE Page 13 of 51

Variables and Data Types in Java

Variable is a name of memory location. There are three types of variables in java: local, instance

and static.

There are two types of data types in java: primitive and non-primitive.

Types of Variable

There are three types of variables in java:

o local variable

o instance variable

o static variable

1) Local Variable

A variable which is declared inside the method is called local variable.

2) Instance Variable

A variable which is declared inside the class but outside the method, is called instance variable . It

is not declared as static.

3) Static variable

A variable that is declared as static is called static variable. It cannot be local.

We will have detailed learning of these variables in next chapters.

Example to understand the types of variables in java

class A{

int data=50;//instance variable

static int m=100;//static variable

void method(){

int n=90;//local variable

}

}//end of class

Constants in Java

A constant is a variable which cannot have its value changed after declaration. It uses the 'final'

keyword.

Syntax

modifier final dataType variableName = value; //global constant

modifier static final dataType variableName = value; //constant within a c

Department of CSE Page 14 of 51

Scope and Life Time of Variables

The scope of a variable defines the section of the code in which the variable is visible. As a

general rule, variables that are defined within a block are not accessible outside that block.

The lifetime of a variable refers to how long the variable exists before it is destroyed.

Destroying variables refers to deallocating the memory that was allotted to the variables when

declaring it. We have written a few classes till now. You might have observed that not all

variables are the same. The ones declared in the body of a method were different from those

that were declared in the class itself. There are three types of variables: instance variables,

formal parameters or local variables and local variables.

Instance variables

Instance variables are those that are defined within a class itself and not in any method or

constructor of the class. They are known as instance variables because every instance of the

class (object) contains a copy of these variables. The scope of instance variables is determined

by the access specifier that is applied to these variables. We have already seen about it earlier.

The lifetime of these variables is the same as the lifetime of the object to which it belongs.

Object once created do not exist for ever. They are destroyed by the garbage collector of Java

when there are no more reference to that object. We shall see about Java's automatic garbage

collector later on.

Argument variables

These are the variables that are defined in the header oaf constructor or a method. The scope

of these variables is the method or constructor in which they are defined. The lifetime is

limited to the time for which the method keeps executing. Once the method finishes

execution, these variables are destroyed.

Local variables

A local variable is the one that is declared within a method or a constructor (not in the

header). The scope and lifetime are limited to the method itself.

One important distinction between these three types of variables is that access specifiers can

be applied to instance variables only and not to argument or local variables.

In addition to the local variables defined in a method, we also have variables that are defined

in bocks life an if block and an else block. The scope and is the same as that of the block

itself.

Arrays

Java provides a data structure, the array, which stores a fixed-size sequential collection of

elements of the same type. An array is used to store a collection of data, but it is often more

useful to think of an array as a collection of variables of the same type.

Department of CSE Page 15 of 51

Instead of declaring individual variables, such as number0, number1, ..., and number99, you

declare one array variable such as numbers and use numbers[0], numbers[1], and ...,

numbers[99] to represent individual variables.

This tutorial introduces how to declare array variables, create arrays, and process arrays using

indexed variables.

Declaring Array Variables:

To use an array in a program, you must declare a variable to reference the array, and you must

specify the type of array the variable can reference. Here is the syntax for declaring an array

variable:

Note: The style dataType[] arrayRefVar is preferred. The style dataType

arrayRefVar[] comes from the C/C++ language and was adopted in Java to accommodate

C/C++ programmers.

Example:

The following code snippets are examples of this syntax:

Creating Arrays:

You can create an array by using the new operator with the following syntax:

The above statement does two things:

 It creates an array using new dataType[arraySize];

 It assigns the reference of the newly created array to the variable arrayRefVar.

Declaring an array variable, creating an array, and assigning the reference of the array to the

variable can be combined in one statement, as shown below:

Alternatively you can create arrays as follows:

dataType[] arrayRefVar; // preferred way.

or

dataType arrayRefVar[]; // works but not preferred way.

double[] myList;

or

double myList[];

// preferred way.

// works but not preferred way.

arrayRefVar = new dataType[arraySize];

dataType[] arrayRefVar = new dataType[arraySize];

dataType[] arrayRefVar = {value0, value1, ..., valuek};

Department of CSE Page 16 of 51

The array elements are accessed through the index. Array indices are 0-based; that is, they start

from 0 to arrayRefVar.length-1.

Example:

Following statement declares an array variable, myList, creates an array of 10 elements of

double type and assigns its reference to myList:

Following picture represents array myList. Here, myList holds ten double values and the indices

are from 0 to 9.

Processing Arrays:

When processing array elements, we often use either for loop or for each loop because all of the

elements in an array are of the same type and the size of the array is known.

Example:

Here is a complete example of showing how to create, initialize and process arrays:

double[] myList = new double[10];

public class TestArray

{

public static void main(String[] args) {

double[] myList = {1.9, 2.9, 3.4, 3.5};

// Print all the array elements

for (int i = 0; i < myList.length; i++) {

System.out.println(myList[i] + " ");

}

// Summing all elements

double total = 0;

for (int i = 0; i < myList.length; i++) {

total += myList[i];

}

System.out.println("Total is " + total);

// Finding the largest element

double max = myList[0];

for (int i = 1; i < myList.length; i++) {

if (myList[i] > max) max = myList[i];

}

System.out.println("Max is " + max);

}

}

Department of CSE Page 17 of 51

This would produce the following result:

Operators in java

Operator in java is a symbol that is used to perform operations. For example: +, -, *, / etc.

There are many types of operators in java which are given below:

o Unary Operator,

o Arithmetic Operator,

o shift Operator,

o Relational Operator,

o Bitwise Operator,

o Logical Operator,

o Ternary Operator and

o Assignment Operator.

 Operators Hierarchy

public class TestArray {

public static void main(String[] args) {

double[] myList = {1.9, 2.9, 3.4, 3.5};

// Print all the array elements

for (double element: myList) {

System.out.println(element);

}}}

1.9

2.9

3.4

3.5

Total is 11.7

Max is 3.5

Department of CSE Page 18 of 51

Expressions
Expressions are essential building blocks of any Java program, usually created to produce a new

value, although sometimes an expression simply assigns a value to a variable. Expressions are

built using values, variables, operators and method calls.

Types of Expressions

While an expression frequently produces a result, it doesn't always. There are three types of

expressions in Java:

 Those that produce a value, i.e. the result of (1 + 1)

 Those that assign a variable, for example (v = 10)

 Those that have no result but might have a "side effect" because an expression can include

a wide range of elements such as method invocations or increment operators that modify

the state (i.e. memory) of a program.

Java Type casting and Type conversion

https://www.thoughtco.com/variable-2034325

Department of CSE Page 19 of 51

Widening or Automatic Type Conversion

Widening conversion takes place when two data types are automatically converted. This happens

when:

 The two data types are compatible.

 When we assign value of a smaller data type to a bigger data type.

For Example, in java the numeric data types are compatible with each other but no automatic

conversion is supported from numeric type to char or boolean. Also, char and boolean are not

compatible with each other.

Narrowing or Explicit Conversion

If we want to assign a value of larger data type to a smaller data type we perform explicit type

casting or narrowing.

 This is useful for incompatible data types where automatic conversion cannot be done.

 Here, target-type specifies the desired type to convert the specified value to.

 Java Enum

Enum in java is a data type that contains fixed set of constants.

It can be used for days of the week (SUNDAY, MONDAY, TUESDAY, WEDNESDAY,

THURSDAY, FRIDAY and SATURDAY) , directions (NORTH, SOUTH, EAST and WEST)

etc. The java enum constants are static and final implicitly. It is available from JDK 1.5.

Java Enums can be thought of as classes that have fixed set of constants.

Simple example of java enum

class EnumExample1{

public enum Season { WINTER, SPRING, SUMMER, FALL }

public static void main(String[] args) {

for (Season s : Season.values())

System.out.println(s);



Department of CSE Page 20 of 51

}}

Control Flow Statements

The control flow statements in Java allow you to run or skip blocks of code when special

conditions are met.

The “if” Statement

The “if” statement in Java works exactly like in most programming languages. With the help of

“if” you can choose to execute a specific block of code when a predefined condition is met. The

structure of the “if” statement in Java looks like this:

if (condition) {

// execute this code

}

 The condition is Boolean. Boolean means it may be true or false. For example you may put a

mathematical equation as condition. Look at this full example:

Creating a Stand-Alone Java Application

1. Write a main method that runs your program. You can write this method anywhere. In this

example, I'll write my main method in a class called Main that has no other methods. For

example:

Output:

WINTER

SPRING

SUMMER

FALL

Department of CSE Page 21 of 51

2. public class Main

3. {

4. public static void main(String[] args)

5. {

6. Game.play();

7. } }

8. Make sure your code is compiled, and that you have tested it thoroughly.

9. If you're using Windows, you will need to set your path to include Java, if you haven't

done so already. This is a delicate operation. Open Explorer, and look inside

C:\ProgramFiles\Java, and you should see some version of the JDK. Open this folder, and

then open the bin folder. Select the complete path from the top of the Explorer window, and

press Ctrl-C to copy it.

Next, find the "My Computer" icon (on your Start menu or desktop), right-click it, and select

properties. Click on the Advanced tab, and then click on the Environment variables button.

Look at the variables listed for all users, and click on the Path variable. Do not delete the

contents of this variable! Instead, edit the contents by moving the cursor to the right end,

entering a semicolon (;), and pressing Ctrl-V to paste the path you copied earlier. Then go

ahead and save your changes. (If you have any Cmd windows open, you will need to close

them.)

10. If you're using Windows, go to the Start menu and type "cmd" to run a program that

brings up a command prompt window. If you're using a Mac or Linux machine, run the

Terminal program to bring up a command prompt.

11. In Windows, type dir at the command prompt to list the contents of the current directory.

On a Mac or Linux machine, type ls to do this.

12. Now we want to change to the directory/folder that contains your compiled code. Look at

the listing of sub-directories within this directory, and identify which one contains your code.

Type cd followed by the name of that directory, to change to that directory. For example, to

change to a directory called Desktop, you would type:

cd Desktop

To change to the parent directory, type:

cd ..

Every time you change to a new directory, list the contents of that directory to see where to go

next. Continue listing and changing directories until you reach the directory that contains

your .class files.

13. If you compiled your program using Java 1.6, but plan to run it on a Mac, you'll need to

recompile your code from the command line, by typing:

javac -target 1.5 *.java

14. Now we'll create a single JAR file containing all of the files needed to run your program.

Java Console Class

Department of CSE Page 22 of 51

The Java Console class is be used to get input from console. It provides methods to read texts and

passwords.

If you read password using Console class, it will not be displayed to the user.

The java.io.Console class is attached with system console internally. The Console class is

introduced since 1.5.

Let's see a simple example to read text from console.

1. String text=System.console().readLine();

2. System.out.println("Text is: "+text);

Java Console Example

import java.io.Console;

class ReadStringTest{

public static void main(String args[]){

Console c=System.console();

System.out.println("Enter your name: ");

String n=c.readLine();

System.out.println("Welcome "+n); } }

Output

Java - Methods

A Java method is a collection of statements that are grouped together to perform an operation.

When you call the System.out.println() method, for example, the system actually executes

several statements in order to display a message on the console.

Now you will learn how to create your own methods with or without return values, invoke a

method with or without parameters, and apply method abstraction in the program design.

Creating Method

Considering the following example to explain the syntax of a method −

 public static − modifier

Enter your name: Nakul Jain

Welcome Nakul Jain

Department of CSE Page 23 of 51

 int − return type

 methodName − name of the method

 a, b − formal parameters

 int a, int b − list of parameters

Method definition consists of a method header and a method body. The same is shown in the

following syntax −

Syntax

The syntax shown above includes −

 modifier − It defines the access type of the method and it is optional to use.

 returnType − Method may return a value.

 nameOfMethod − This is the method name. The method signature consists of the method

name and the parameter list.

Parameter List − The list of parameters, it is the type, order, and number of parameters of a

method. These are optional, method may contain zero parameters.

 method body − The method body defines what the method does with the statements.

Call by Value and Call by Reference in Java

There is only call by value in java, not call by reference. If we call a method passing a value, it

is known as call by value. The changes being done in the called method, is not affected in the

calling method.

Example of call by value in java

In case of call by value original value is not changed. Let's take a simple example:

class Operation{

int data=50;

void change(int data){

data=data+100;//changes will be in the local variable only

}

public static void main(String args[]){

Operation op=new Operation();

System.out.println("before change "+op.data);

modifier returnType nameOfMethod (Parameter List) {

// method body

}

Department of CSE Page 24 of 51

op.change(500);

System.out.println("after change "+op.data);

}

}

In Java, parameters are always passed by value. For example, following program prints

i = 10, j = 20.

// Test.java

class Test {

// swap() doesn't swap i and j

public static void swap(Integer i, Integer j) {

Integer temp = new Integer(i);

i = j;

j = temp;

}

public static void main(String[] args) {

Integer i = new Integer(10);

Integer j = new Integer(20);

swap(i, j);

System.out.println("i = " + i + ", j = " + j);

}

}

Static Fields and Methods

The static keyword in java is used for memory management mainly. We can apply java static

keyword with variables, methods, blocks and nested class. The static keyword belongs to the class

than instance of the class.

The static can be:

1. variable (also known as class variable)

2. method (also known as class method)

3. block

4. nested class

Java static variable

If you declare any variable as static, it is known static variable.

Output:before change 50

after change 50

Department of CSE Page 25 of 51

o The static variable can be used to refer the common property of all objects (that is not unique for

each object) e.g. company name of employees,college name of students etc.

o The static variable gets memory only once in class area at the time of class loading.

Advantage of static variable

It makes your program memory efficient (i.e it saves memory).

Understanding problem without static variable

1. class Student{

2. int rollno;

3. String name;

4. String college="ITS";

5. }

Example of static variable

//Program of static variable

class Student8{

int rollno;

String name;

static String college ="ITS";

Student8(int r,String n){

rollno = r;

name = n;

}

void display (){System.out.println(rollno+" "+name+" "+college);}

public static void main(String args[]){

Student8 s1 = new Student8(111,"Karan");

Student8 s2 = new Student8(222,"Aryan");

s1.display();

s2.display();

} }

Output:111 Karan ITS

222 Aryan ITS

Java static method

Department of CSE Page 26 of 51

If you apply static keyword with any method, it is known as static method.

o A static method belongs to the class rather than object of a class.

o A static method can be invoked without the need for creating an instance of a class.

o static method can access static data member and can change the value of it.

Example of static method

//Program of changing the common property of all objects(static field).

class Student9{

int rollno;

String name;

static String college = "ITS";

static void change(){

college = "BBDIT";

}

Student9(int r, String n){

rollno = r;

name = n;

Department of CSE Page 27 of 51

}

void display (){System.out.println(rollno+" "+name+" "+college);}

public static void main(String args[]){

Student9.change();

Student9 s1 = new Student9 (111,"Karan");

Student9 s2 = new Student9 (222,"Aryan");

Student9 s3 = new Student9 (333,"Sonoo");

s1.display();

s2.display();

s3.display();

} }

Java static block

o Is used to initialize the static data member.

o It is executed before main method at the time of class loading.

Example of static block

class A2{

static{System.out.println("static block is invoked");}

public static void main(String args[]){

System.out.println("Hello main");

} }

“this” keyword in java

Usage of java this keyword

Here is given the 6 usage of java this keyword.

1. this can be used to refer current class instance variable.

2. this can be used to invoke current class method (implicitly)

3. this() can be used to invoke current class constructor.

Output:111 Karan BBDIT

222 Aryan BBDIT

333 Sonoo BBDIT

Output: static block is invoked

Hello main

Department of CSE Page 28 of 51

4. this can be passed as an argument in the method call.

5. this can be passed as argument in the constructor call.

6. this can be used to return the current class instance from the method.

class Student{

int rollno;

String name;

float fee;

Student(int rollno,String name,float fee){

this.rollno=rollno;

this.name=name;

this.fee=fee;

}

void display(){System.out.println(rollno+" "+name+" "+fee);}

}

class TestThis2{

public static void main(String args[]){

Student s1=new Student(111,"ankit",5000f);

Student s2=new Student(112,"sumit",6000f);

s1.display();

s2.display();

}}

Output:

Java String

string is basically an object that represents sequence of char values. An array of characters works

same as java string. For example:

1. char[] ch={'j','a','v','a','t','p','o','i','n','t'};

2. String s=new String(ch);

ssame as:

1. String s="javatpoint";

2. Java String class provides a lot of methods to perform operations on string such as

compare(), concat(), equals(), split(), length(), replace(), compareTo(), intern(), substring()

etc.

3. The java.lang.String class

implements Serializable, Comparable and CharSequence interfaces.

111 ankit 5000

112 sumit 6000

Department of CSE Page 29 of 51

CharSequence Interface
The CharSequence interface is used to represent sequence of characters. It is implemented by

String, StringBuffer and StringBuilder classes. It means, we can create string in java by using

these 3 classes.

The java String is immutable i.e. it cannot be changed. Whenever we change any

string, a new instance is created. For mutable string, you can use StringBuffer and StringBuilder

classes.

There are two ways to create String object:

1. By string literal

2. By new keyword

String Literal

Java String literal is created by using double quotes. For Example:

1. String s="welcome";

Each time you create a string literal, the JVM checks the string constant pool first. If the string

already exists in the pool, a reference to the pooled instance is returned. If string doesn't exist in

the pool, a new string instance is created and placed in the pool. For example:

1. String s1="Welcome";

2. String s2="Welcome";//will not create new instance

By new keyword

1. String s=new String("Welcome");//creates two objects and one reference variable

In such case, JVM will create a new string object in normal (non pool) heap memory and the

literal "Welcome" will be placed in the string constant pool. The variable s will refer to the object

in heap (non pool).

Java String Example

public class StringExample{

public static void main(String args[]){

String s1="java";//creating string by java string literal

char ch[]={'s','t','r','i','n','g','s'};

String s2=new String(ch);//converting char array to string

String s3=new String("example");//creating java string by new keyword

System.out.println(s1);

System.out.println(s2);

Department of CSE Page 30 of 51

System.out.println(s3);

}}

 java

Immutable String in Java

In java, string objects are immutable. Immutable simply means unmodifiable or unchangeable.

Once string object is created its data or state can't be changed but a new string object is created.

Let's try to understand the immutability concept by the example given below:

class Testimmutablestring{

public static void main(String args[]){

String s="Sachin";

s.concat(" Tendulkar");//concat() method appends the string at the end

System.out.println(s);//will print Sachin because strings are immutable objects

} }

 Output:Sachin

class Testimmutablestring1{

public static void main(String args[]){

String s="Sachin";

s=s.concat(" Tendulkar");

System.out.println(s);

} } Output:Sachin Tendulkar

strings

example

Department of CSE Page 31 of 51

Method Overloading in java

If a class has multiple methods having same name but different in parameters, it is known

as Method Overloading.

If we have to perform only one operation, having same name of the methods increases the

readability of the program.

Method Overloading: changing no. of arguments

In this example, we have created two methods, first add() method performs addition of two

numbers and second add method performs addition of three numbers.

In this example, we are creating static methods so that we don't need to create instance for calling

methods.

class Adder{

static int add(int a,int b){return a+b;}

static int add(int a,int b,int c){return a+b+c;}

}

class TestOverloading1{

public static void main(String[] args){

System.out.println(Adder.add(11,11));

System.out.println(Adder.add(11,11,11));

}}

Output:

Method Overloading: changing data type of arguments

In this example, we have created two methods that differs in data type. The first add method

receives two integer arguments and second add method receives two double arguments.

22

33

Department of CSE Page 32 of 51

Recursion in Java
Recursion in java is a process in which a method calls itself continuously. A method in java that

calls itself is called recursive method.

Java Recursion Example 1: Factorial Number

public class RecursionExample3 {

static int factorial(int n){

if (n == 1)

return 1;

else

return(n * factorial(n-1));

} }

public static void main(String[] args) {

System.out.println("Factorial of 5 is: "+factorial(5));

} }

Output:

Java Garbage Collection

In java, garbage means unreferenced objects.

Garbage Collection is process of reclaiming the runtime unused memory automatically. In other

words, it is a way to destroy the unused objects.

To do so, we were using free() function in C language and delete() in C++. But, in java it is

performed automatically. So, java provides better memory management.

Advantage of Garbage Collection

o It makes java memory efficient because garbage collector removes the unreferenced

objects from heap memory.

o It is automatically done by the garbage collector(a part of JVM) so we don't need to make

extra efforts.

gc() method

Factorial of 5 is: 120

Department of CSE Page 33 of 51

The gc() method is used to invoke the garbage collector to perform cleanup processing. The

gc() is found in System and Runtime classes.

public static void gc(){}

Simple Example of garbage collection in java

public class TestGarbage1{

public void finalize(){System.out.println("object is garbage collected");}

public static void main(String args[]){

TestGarbage1 s1=new TestGarbage1();

TestGarbage1 s2=new TestGarbage1();

s1=null;

s2=null;

System.gc();

} }

object is garbage collected

object is garbage collected

Department of CSE Page 34 of 51

Inheritance in Java

Inheritance in java is a mechanism in which one object acquires all the properties and behaviors

of parent object. Inheritance represents the IS-A relationship, also known as parent-

child relationship.

Why use inheritance in java

o For Method Overriding (so runtime polymorphism can be achieved).

o For Code Reusability.

Syntax of Java Inheritance

1. class Subclass-name extends Superclass-name

2. {

3. //methods and fields

4. }

The extends keyword indicates that you are making a new class that derives from an existing

class. The meaning of "extends" is to increase the functionality.

class Employee{

float salary=40000;

}

class Programmer extends Employee{

int bonus=10000;

public static void main(String args[]){

Programmer p=new Programmer();

System.out.println("Programmer salary is:"+p.salary);

System.out.println("Bonus of Programmer is:"+p.bonus);

} }

OUTPUT:

 Programmer salary is:40000.0

Bonus of programmer is:10000

Department of CSE Page 35 of 51

Types of inheritance in java

Single Inheritance Example

File: TestInheritance.java

class Animal{

void eat(){System.out.println("eating...");}

}

class Dog extends Animal{

void bark(){System.out.println("barking...");}

}

class TestInheritance{

public static void main(String args[]){

Dog d=new Dog();

d.bark();

d.eat();

}}

Output:

Multilevel Inheritance Example

File: TestInheritance2.java

class Animal{

void eat(){System.out.println("eating...");}

}

class Dog extends Animal{

void bark(){System.out.println("barking...");}

}

class BabyDog extends Dog{

void weep(){System.out.println("weeping...");}

}

class TestInheritance2{

barking...

eating...

Department of CSE Page 36 of 51

public static void main(String args[]){

BabyDog d=new BabyDog();

d.weep();

d.bark();

 at();

}}

Output:

Hierarchical Inheritance Example

File: TestInheritance3.java

class Animal{

void eat(){System.out.println("eating...");}

}

class Dog extends Animal{

void bark(){System.out.println("barking...");}

}

class Cat extends Animal{

void meow(){System.out.println("meowing...");}

}

class TestInheritance3{

public static void main(String args[]){

Cat c=new Cat();

c.meow();

c.eat();

//c.bark();//C.T.Error

}}

Output:

weeping...

barking...

eating...

meowing...

eating...

Department of CSE Page 37 of 51

Member access and Inheritance

A subclass includes all of the members of its super class but it cannot access those members of the super

class that have been declared as private. Attempt to access a private variable would cause compilation error

as it causes access violation. The variables declared as private, is only accessible by other members of its

own class. Subclass have no access to it.

CONSTUCTORS

A constructor initializes an object when it is created. It has the same name as its class and is syntactically

similar to a method. However, constructors have no explicit return type.

Typically, you will use a constructor to give initial values to the instance variables defined by the class, or to

perform any other start-up procedures required to create a fully formed object.

All classes have constructors, whether you define one or not, because Java automatically provides a default

constructor that initializes all member variables to zero. However, once you define your own constructor, the

default constructor is no longer used.

Syntax

Following is the syntax of a constructor

class ClassName {

 ClassName() {

 }

}

Java allows two types of constructors namely −

 No argument Constructors

 Parameterized Constructors

No argument Constructors

As the name specifies the no argument constructors of Java does not accept any parameters instead, using

these constructors the instance variables of a method will be initialized with fixed values for all objects.

Example

Public class MyClass {

 Int num;

 MyClass() {

 num = 100;

 }

}

You would call constructor to initialize objects as follows

public class ConsDemo {

 public static void main(String args[]) {

 MyClass t1 = new MyClass();

 MyClass t2 = new MyClass();

 System.out.println(t1.num + " " + t2.num);

 }

}

Department of CSE Page 38 of 51

This would produce the following result

100 100

Parameterized Constructors

Most often, you will need a constructor that accepts one or more parameters. Parameters are added to a

constructor in the same way that they are added to a method, just declare them inside the parentheses after the

constructor's name.

Example

Here is a simple example that uses a constructor −

// A simple constructor.

class MyClass {

 int x;

 // Following is the constructor

 MyClass(int i) {

 x = i;

 }

}

You would call constructor to initialize objects as follows −

public class ConsDemo {

 public static void main(String args[]) {

 MyClass t1 = new MyClass(10);

 MyClass t2 = new MyClass(20);

 System.out.println(t1.x + " " + t2.x);

 }

}

This would produce the following result −

10 20

Constructor Overloading in Java

Constructor overloading is a technique in Java in which a class can have any number of

constructors that differ in parameter lists.The compiler differentiates these constructors by

taking into account the number of parameters in the list and their type.

Example of Constructor Overloading

class Student5{

int id;

String name;

int age;

Student5(int i,String n){

id = i;

Department of CSE Page 39 of 51

name = n;

}

Student5(int i,String n,int a){

id = i;

name = n;

age=a;

}

void display(){System.out.println(id+" "+name+" "+age);}

public static void main(String args[]){

Student5 s1 = new Student5(111,"Karan");

Student5 s2 = new Student5(222,"Aryan",25);

s1.display();

s2.display();

}

}

Output:

111 Karan 0

222 Aryan 25

Creating a Multilevel Inheritance Hierarchy in Java

Inheritance involves an object acquiring the properties and behaviour of another object. So basically, using

inheritance can extend the functionality of the class by creating a new class that builds on the previous class by

inheriting it.

Multilevel inheritance is when a class inherits a class which inherits another class. An example of this is class C

inherits class B and class B in turn inherits class A.

A program that demonstrates a multilevel inheritance hierarchy in Java is given as follows:

Example

class A {

 void funcA() {

 System.out.println("This is class A");

 }

}

class B extends A {

 void funcB() {

Department of CSE Page 40 of 51

 System.out.println("This is class B");

 }

}

class C extends B {

 void funcC() {

 System.out.println("This is class C");

 }

}

public class Demo {

 public static void main(String args[]) {

 C obj = new C();

 obj.funcA();

 obj.funcB();

 obj.funcC();

 }

}

Output

This is class A

This is class B

This is class C

super keyword in java

The super keyword in java is a reference variable which is used to refer immediate parent class

object.

Whenever you create the instance of subclass, an instance of parent class is created implicitly

which is referred by super reference variable.

Usage of java super Keyword

1. super can be used to refer immediate parent class instance variable.

2. super can be used to invoke immediate parent class method.

3. super() can be used to invoke immediate parent class constructor.

super is used to refer immediate parent class instance variable.

class Animal{

Department of CSE Page 41 of 51

String color="white";

}

class Dog extends Animal{

String color="black";

void printColor(){

System.out.println(color);//prints color of Dog class

System.out.println(super.color);//prints color of Animal class

}

}

class TestSuper1{

public static void main(String args[]){

Dog d=new Dog();

d.printColor();

}}

Output:

Final Keyword in Java

The final keyword in java is used to restrict the user. The java final keyword can be used in many context.

Final can be:

1. variable

2. method

3. class

The final keyword can be applied with the variables, a final variable that have no value it is called blank

final variable or uninitialized final variable. It can be initialized in the constructor only. The blank final

variable can be static also which will be initialized in the static block only.

black

white

Department of CSE Page 42 of 51

Polymorphism :

The polymorphism is the process of defining same method with different implementation. That means creating

multiple methods with different behaviors.

In java, polymorphism implemented using method overloading and method overriding.

Ad hoc polymorphism :

The ad hoc polymorphism is a technique used to define the same method with different implementations and

different arguments. In a java programming language, ad hoc polymorphism carried out with a method

overloading concept.

In ad hoc polymorphism the method binding happens at the time of compilation. Ad hoc polymorphism is also

known as compile-time polymorphism. Every function call binded with the respective overloaded method

based on the arguments.

The ad hoc polymorphism implemented within the class only.

Let's look at the following example java code.

Example

import java.util.Arrays;

public class AdHocPolymorphismExample {

 void sorting(int[] list) {

 Arrays.parallelSort(list);

 System.out.println("Integers after sort: " + Arrays.toString(list));

 }

 void sorting(String[] names) {

 Arrays.parallelSort(names);

 System.out.println("Names after sort: " + Arrays.toString(names));

 }

 public static void main(String[] args) {

 AdHocPolymorphismExample obj = new AdHocPolymorphismExample();

 int list[] = {2, 3, 1, 5, 4};

 obj.sorting(list); // Calling with integer array

 String[] names = {"rama", "raja", "shyam", "seeta"};

 obj.sorting(names); // Calling with String array

 }

Department of CSE Page 43 of 51

}

Pure polymorphism :

The pure polymorphism is a technique used to define the same method with the same arguments but different

implementations. In a java programming language, pure polymorphism carried out with a method overriding

concept.

In pure polymorphism, the method binding happens at run time. Pure polymorphism is also known as run-time

polymorphism. Every function call binding with the respective overridden method based on the object

reference.

When a child class has a definition for a member function of the parent class, the parent class function is said to

be overridden.

The pure polymorphism implemented in the inheritance concept only.

Let's look at the following example java code.

Example

class ParentClass{

 int num = 10;

 void showData() {

 System.out.println("Inside ParentClass showData() method");

 System.out.println("num = " + num);

 }

}

class ChildClass extends ParentClass{

 void showData() {

 System.out.println("Inside ChildClass showData() method");

 System.out.println("num = " + num);

 }

}

public class PurePolymorphism {

 public static void main(String[] args) {

Department of CSE Page 44 of 51

 ParentClass obj = new ParentClass();

 obj.showData();

 obj = new ChildClass();

 obj.showData();

 }

}

Method Overriding in Java

If subclass (child class) has the same method as declared in the parent class, it is known

as method overriding in java.

Usage of Java Method Overriding

o Method overriding is used to provide specific implementation of a method that is already
provided by its super class.

o Method overriding is used for runtime polymorphism

Rules for Java Method Overriding

1. method must have same name as in the parent class

2. method must have same parameter as in the parent class.

3. must be IS-A relationship (inheritance).

Example of method overriding
Class Vehicle{

void run(){System.out.println("Vehicle is running");}

}

class Bike2 extends Vehicle{

void run(){System.out.println("Bike is running safely");}

public static void main(String args[]){

Bike2 obj = new Bike2();

Department of CSE Page 45 of 51

obj.run();

}

Output:Bike is running safely

1. class Bank{

int getRateOfInterest(){return 0;}

}

class SBI extends Bank{

int getRateOfInterest(){return 8;}

}

class ICICI extends Bank{

int getRateOfInterest(){return 7;}

}

class AXIS extends Bank{

int getRateOfInterest(){return 9;}

}

class Test2{

public static void main(String args[]){

SBI s=new SBI();

ICICI i=new ICICI();

AXIS a=new AXIS();

System.out.println("SBI Rate of Interest: "+s.getRateOfInterest());

System.out.println("ICICI Rate of Interest: "+i.getRateOfInterest());

System.out.println("AXIS Rate of Interest: "+a.getRateOfInterest());

} }

Output:

SBI Rate of Interest: 8

Department of CSE Page 46 of 51

Abstract class in Java

A class that is declared with abstract keyword is known as abstract class in java. It can have

abstract and non-abstract methods (method with body). It needs to be extended and its method

implemented. It cannot be instantiated.

Example abstract class

1. abstract class A{}

abstract method

1. abstract void printStatus();//no body and abstract

Example of abstract class that has abstract method

abstract class Bike{

abstract void run();

}

class Honda4 extends Bike{

void run(){System.out.println("running safely..");}

public static void main(String

args[]){ Bike obj = new Honda4();

obj.run();

}

1. }

Object class in Java

The Object class is the parent class of all the classes in java by default. In other words, it is the

topmost class of java.

The Object class is beneficial if you want to refer any object whose type you don't know. Notice

that parent class reference variable can refer the child class object, know as upcasting.

Let's take an example, there is getObject() method that returns an object but it can be of any type

like Employee,Student etc, we can use Object class reference to refer that object. For example:

2. Object obj=getObject();//we don't know what object will be returned from this method

The Object class provides some common behaviors to all the objects such as object can be

running safely..

ICICI Rate of Interest: 7

AXIS Rate of Interest: 9

Department of CSE Page 47 of 51

compared, object can be cloned, object can be notified etc.

Forms of Inheritance :

All objects eventually inherit from Object, which provides useful methods such as equals and toString.

In general we want to satisfy substitutability: if B is a subclass of A, anywhere we expect an instance of A

we can use an instance of B.

Inheritance gets used for a number of purposes in typical object-oriented programming:

specialization -- the subclass is a special case of the parent class (e.g. Frame and CannonWorld)

specification -- the superclass just specifies which methods should be available but doesn't give

code. This is supported in java by interfaces and abstract methods.

construction -- the superclass is just used to provide behavior, but instances of the subclass don't

really act like the superclass. Violates substitutability. Exmample: defining Stack as a subclass of

Vector. This is not clean -- better to define Stack as having a field that holds a vector.

extension -- subclass adds new methods, and perhaps redefines inherited ones as well.

limitation -- the subclass restricts the inherited behavior. Violates substitutability. Example: defining

Queue as a subclass of Dequeue.

combination -- multiple inheritance. Provided in part by implementing multiple interfaces.

Inheritance is used in a variety of way and for a variety of different purposes .

 Inheritance for Specialization

 Inheritance for Specification

 Inheritance for Construction

 Inheritance for Extension

 Inheritance for Limitation

 Inheritance for Combination

One or many of these forms may occur in a single case.

Forms of Inheritance (- Inheritance for Specialization -)

Most commonly used inheritance and sub classification is for specialization.

Always creates a subtype, and the principles of substitutability is explicitly upheld.

It is the most ideal form of inheritance.

An example of subclassification for specialization is;

public class PinBallGame extends Frame {

// body of class

}

Specialization

 By far the most common form of inheritance is for specialization.

 Child class is a specialized form of parent class

 Principle of substitutability holds

Department of CSE Page 48 of 51

 A good example is the Java hierarchy of Graphical components in the AWT:

 Component

 Label

 Button

 TextComponent

 TextArea

 TextField

 CheckBox

 ScrollBar

Forms of Inheritance (- Inheritance for Specification -)

This is another most common use of inheritance. Two different mechanisms are provided by Java, interface

and abstract, to make use of subclassification for specification. Subtype is formed and substitutability is

explicitly upheld.

Mostly, not used for refinement of its parent class, but instead is used for definitions of the properties

provided by its parent.

class FireButtonListener implements ActionListener {

// body of class

}

class B extends A {

// class A is defined as abstract specification class

}

Specification
 The next most common form of inheritance involves specification. The parent class specifies some

behavior, but does not implement the behavior

 Child class implements the behavior

 Similar to Java interface or abstract class

 When parent class does not implement actual behavior but merely defines the behavior that

will be implemented in child classes

 Example, Java 1.1 Event Listeners:

ActionListener, MouseListener, and so on specify behavior, but must be subclassed.

Forms of Inheritance (- Inheritance for Construction -)

Child class inherits most of its functionality from parent, but may change the name or parameters of methods

inherited from parent class to form its interface.

This type of inheritance is also widely used for code reuse purposes. It simplifies the construction of newly

formed abstraction but is not a form of subtype, and often violates substitutability.

Example is Stack class defined in Java libraries.

Department of CSE Page 49 of 51

Construction

 The parent class is used only for its behavior, the child class has no is-a relationship to the parent.

 Child modify the arguments or names of methods

 An example might be subclassing the idea of a Set from an existing List class.

 Child class is not a more specialized form of parent class; no substitutability

Forms of Inheritance (- Inheritance for Extension -)

Subclassification for extension occurs when a child class only adds new behavior to the parent class and

does not modify or alter any of the inherited attributes.

Such subclasses are always subtypes, and substitutability can be used.

Example of this type of inheritance is done in the definition of the class Properties which is an extension of

the class HashTable.

Generalization or Extension

 The child class generalizes or extends the parent class by providing more functionality

 In some sense, opposite of subclassing for specialization

 The child doesn't change anything inherited from the parent, it simply adds new features

 Often used when we cannot modify existing base parent class

 Example, ColoredWindow inheriting from Window

 Add additional data fields

 Override window display methods

Forms of Inheritance (- Inheritance for Limitation -)

Subclassification for limitation occurs when the behavior of the subclass is smaller or more restrictive that

the behavior of its parent class.

Like subclassification for extension, this form of inheritance occurs most frequently when a programmer is

building on a base of existing classes.

Is not a subtype, and substitutability is not proper.

Limitation
 The child class limits some of the behavior of the parent class.

 Example, you have an existing List data type, and you want a Stack

 Inherit from List, but override the methods that allow access to elements other than top so as to

produce errors.

Department of CSE Page 50 of 51

Forms of Inheritance (- Inheritance for Combination -)

This types of inheritance is known as multiple inheritance in Object Oriented Programming.

Although the Java does not permit a subclass to be formed be inheritance from more than one parent class,

several approximations to the concept are possible.

Example of this type is Hole class defined as;

class Hole extends Ball implements PinBallTarget{

// body of class

}

Combination
 Two or more classes that seem to be related, but its not clear who should be the parent and who

should be the child.

 Example: Mouse and TouchPad and JoyStick

 Better solution, abstract out common parts to new parent class, and use subclassing for

specialization.

Summary of Forms of Inheritance :

 Specialization. The child class is a special case of the parent class; in other words, the child class

is a subtype of the parent class.

 Specification. The parent class defines behavior that is implemented in the child class but not in

the parent class.

 Construction. The child class makes use of the behavior provided by the parent class, but is not a

subtype of the parent class.

 Generalization. The child class modifies or overrides some of the methods of the parent class.

 Extension. The child class adds new functionality to the parent class, but does not change any

inherited behavior.

 Limitation. The child class restricts the use of some of the behavior inherited from the parent

class.

 Variance. The child class and parent class are variants of each other, and the class-subclass

relationship is arbitrary.

 Combination. The child class inherits features from more than one parent class. This is multiple

inheritance and will be the subject of a later chapter.

The Benefits of Inheritance :
 Software Reusability (among projects)

 Increased Reliability (resulting from reuse and sharing of well-tested code)

 Code Sharing (within a project)

 Consistency of Interface (among related objects)

 Software Components

 Rapid Prototyping (quickly assemble from pre-existing components)

 Polymorphism and Frameworks (high-level reusable components)

 Information Hiding

Department of CSE Page 51 of 51

The Costs of Inheritance :
 Execution Speed

 Program Size

 Message-Passing Overhead

 Program Complexity (in overuse of inheritance)

	Agents and Communities:
	inheritance, data binding, polymorphism etc.
	OOPs (Object Oriented Programming System)
	Object

	Inheritance
	Polymorphism
	Encapsulation
	Benefits of Inheritance
	Procedural and object oriented programming paradigms
	Java Version History
	Features of Java(buzzwords)
	Java Comments
	Types of Java Comments
	Java Single Line Comment
	Syntax:
	Example:

	Java Multi Line Comment
	Syntax:
	Example:

	Java Documentation Comment
	Data Types
	Java Variable Example: Add Two Numbers

	Variables and Data Types in Java
	Types of Variable
	1) Local Variable
	2) Instance Variable
	3) Static variable

	Scope and Life Time of Variables
	The scope of a variable defines the section of the code in which the variable is visible. As a general rule, variables that are defined within a block are not accessible outside that block. The lifetime of a variable refers to how long the variable ex...
	Instance variables
	Declaring Array Variables:
	Example:
	Example: (1)
	Processing Arrays:
	Example: (2)

	Operators Hierarchy
	Types of Expressions

	Java Type casting and Type conversion
	Widening or Automatic Type Conversion
	Narrowing or Explicit Conversion

	Java Enum
	Simple example of java enum
	Control Flow Statements
	The “if” Statement
	if (condition) {

	Creating a Stand-Alone Java Application
	cd Desktop
	cd ..
	Java Console Class
	Java - Methods
	Syntax

	Call by Value and Call by Reference in Java
	Example of call by value in java

	Static Fields and Methods
	Java static variable
	Advantage of static variable
	Understanding problem without static variable

	Example of static variable

	Java static method
	Example of static method
	Example of static block class A2{

	“this” keyword in java
	Usage of java this keyword

	Java String
	String Literal
	Method Overloading in java
	Method Overloading: changing no. of arguments
	Output:

	Recursion in Java
	Advantage of Garbage Collection

	gc() method
	Simple Example of garbage collection in java public class TestGarbage1{
	Why use inheritance in java
	Syntax of Java Inheritance

	Multilevel Inheritance Example
	Hierarchical Inheritance Example
	Syntax
	No argument Constructors
	Example
	Parameterized Constructors
	Example (1)
	Example of Constructor Overloading

	Creating a Multilevel Inheritance Hierarchy in Java
	Example
	Output
	super keyword in java
	Usage of java super Keyword
	super is used to refer immediate parent class instance variable.

	Final Keyword in Java
	Ad hoc polymorphism :
	Pure polymorphism :
	Method Overriding in Java
	Usage of Java Method Overriding
	Rules for Java Method Overriding

	Example of method overriding Class Vehicle{

	Abstract class in Java
	Example abstract class
	abstract method
	Example of abstract class that has abstract method

	Object class in Java

	Specification
	Construction
	Generalization or Extension
	Limitation
	Combination
	Summary of Forms of Inheritance :
	The Benefits of Inheritance :
	The Costs of Inheritance :

